TEORIA GRACELI DOS ESTADOS TRANSFORMATIVOS E INTERATIVOS DE FORÇAS FUNDAMENTAIS.
CONFORME AS INTERAÇÕES DAS FORÇA FUNDAMENTAIS OCORREM TRANSFORMAÇÕES E VARIAÇÕES EM ESTADOS FÍSICOS E ESTADOS QUÂNTICOS, E EM RELAÇÃO AOS ESTADOS DIMENSIONAIS DE GRACELI.
EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.
SENDO QUE AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS SÃO SÃO REPRENTADAS POR. .
O HAMILTANIANO DE ENERGIA POR =
E O OPERADOR DE GRACELI QUE REPRENTA O SEU SISTEMA DIMENSIONAL CATEGORIAL POR G*.
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
1 / G* = = [ ] ω , , / T] / c [ [x,t] ] [-1] =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =operador cujo observável corresponde à ENERGIA TOTAL DO SIS ] é um TEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI.
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI.
VEJAMOS EM UM SISTEMA DE FUSÕES PARA OS ELMENTOS QUÍMICOS.
pontos de fusão dos elementos químicos
/ [ -1/ G* = ] =
A propriedade central da mecânica estatística é a utilização de métodos estatísticos para a formulação de uma teoria cinética para átomos e moléculas, com o intuito de explicar as propriedades deles em um nível macroscópico da natureza.[8]
Um teorema chave é o valor médio da energia cinética das moléculas de um gás a uma certa temperatura que é calculado como
/ [ -1/ G* = ] =
A distribuição de Boltzmann é um resultado muito conhecido na física, que relaciona a Termodinâmica com a Mecânica Estatística.[8] Por exemplo: a distribuição de moléculas na atmosfera - desconsiderando ventos e que se encontra em equilíbrio térmico a uma temperatura
Supondo que é o número de moléculas total em um volume de um gás à pressão então tem-se que:
/ [ -1/ G* = ] =
ou sendo o número de moléculas por unidade de volume. A temperatura sendo uma constante, a sua pressão será proporcional à sua densidade.
A variação de densidade em função da altitude se dá ao tomar-se uma unidade de área com altura sua força vertical será a força sobre a área sendo representado por (pressão).
Em um sistema em equilíbrio, suas forças nas moléculas deverão ser balanceadas ou nulas sendo a pressão feita na área inferior da camada que deve superar a pressão sobre a área de cima da camada assim balanceando com o peso.
Sendo a força da gravidade em cada molécula, é o número total das moléculas em cada área.[8] Com todas essas informações obtém-se a equação diferencial que representa o equilíbrio
/ [ -1/ G* = ] =
Assim, sendo e também constantes , elimina-se e resta a equação para
/ [ -1/ G* = ] =
Tem-se a variação da densidade em função da altura na atmosfera do exemplo:
/ [ -1/ G* = ] =
sendo a densidade em relação à
O numerador do expoente da equação anterior representa a energia potencial para cada átomo, sendo sua densidade em cada ponto igual a
/ [ -1/ G* = ] =
Sendo que é a energia potencial de cada átomo.
Supondo que haja diversas forças em atuação nos átomos, sendo elas carregadas e estejam sob forte influência de um campo elétrico ou haja atração entre elas.
Havendo um tipo apenas de molécula, a força em uma porção de gás será a força sobre uma molécula o número de moléculas nessa mesma porção, sendo que a força age na direção Semelhante em sua forma do problema da atmosfera, tomando dois planos paralelos no gás apenas separados por uma distância representada por então a força sobre cada átomo multiplicada pela a densidade e por deve ser balanceada pela diferença de pressão, ou seja,
/ [ -1/ G* = ] =
sendo o trabalho feito sobre uma molécula ao transportá-la de até seu trabalho é igual à diferença de energia potencial (ao quadrado) assim,
/ [ -1/ G* = ] =
Obtém-se da equação de força anterior:
/ [ -1/ G* = ] =
Resultando em
/ [ -1/ G* = ] =
Sendo a variação de energia do estado final e inicial.
Esta última expressão é tratada como sendo a Lei de Boltzmann e pode ser interpretada da seguinte forma:
- A probabilidade de encontrar moléculas em uma dada configuração espacial é tanto menor quanto maior for a energia dessa configuração a uma dada temperatura.
Tal probabilidade diminui exponencialmente com a energia dividida por
Mecânica estatística de equilíbrio
A mecânica estatística de equilíbrio, também chamada de termodinâmica estatística, tem como objetivo derivar os princípios da termodinâmica clássica dos materiais a partir de suas partículas constituintes e a interação entre elas. Ou seja, a mecânica estatística de equilíbrio relaciona as propriedades macroscópicas dos materiais em equilíbrio termodinâmico com os comportamentos microscópicos ocorrendo dentro do material. Porém, enquanto a mecânica estatística envolve dinâmica, na termodinâmica estatística há o equilíbrio estatístico, ou estado estável. Isso não significa que as partículas não se movam (equilíbrio mecânico), mas sim que o ensemble não está evoluindo.
Postulado de igual probabilidade a priori
Uma condição suficiente (mas não necessária) para o equilíbrio estatístico com um sistema isolado é que a distribuição de probabilidade seja uma função somente de propriedades conservadas (energia total, o número de partículas totais, etc.). Existem muitos conjuntos de equilíbrio diferentes que podem ser considerados, e apenas alguns deles correspondem à termodinâmica. Postulados adicionais são necessários para dizer porque o conjunto para um determinado sistema deve ser de uma forma ou de outra.
Uma abordagem comum encontrada em muitos livros didáticos é usar o postulado de igual probabilidade a priori. Esse postulado diz que
- "Para um sistema isolado com uma energia conhecida com exatidão e a composição exatamente conhecida, o sistema pode ser encontrado com igual probabilidade em qualquer microestado consistente com tal conhecimento."
Portanto, o postulado de igual probabilidade a priori proporciona a base para o conjunto microcanônico descrito abaixo. Há vários argumentos a favor do postulado de igual probabilidade a priori:
- Hipótese ergódica: Um estado ergódico é aquele que evolui ao longo do tempo para explorar "todos estados acessíveis": todos aqueles com a mesma energia e composição. Em um sistema ergódico, o conjunto microcanônico é o único conjunto de equilíbrio possível com energia fixa. Esta abordagem tem aplicabilidade limitada, uma vez que a maioria dos sistemas não são ergódicos.
- Princípio da indiferença: Na ausência de quaisquer outras informações, só podemos atribuir probabilidades iguais para cada situação compatível.
- Entropia máxima: Uma versão mais elaborada do princípio da indiferença afirma que o conjunto correto é o conjunto que é compatível com a informação conhecida e que tem a maior entropia de Gibbs.
Outros postulados fundamentais para a mecânica estatística também foram propostos.
Ensembles ou conjuntos
Existem três ensembles de equilíbrio com uma forma simples, que podem ser definidos para qualquer sistema isolado delimitado dentro de um volume finito. Estes são os conjuntos mais frequentemente discutidos em termodinâmica estatística. No limite macroscópico, todos eles correspondem a termodinâmica clássica.
Conjunto microcanônico
Um conjunto microcanônico é um conjunto de réplicas de microssistemas identicamente preparados. Descreve um sistema com energia precisamente determinada e composição fixa (número preciso de partículas). Cada réplica tem os mesmos possíveis valores de massa(m), volume(V) e energia (E), mas cada uma pode evoluir diferentemente através do espaço de configurações. No conjunto microcanônico não há troca de calor entre o sistema e o exterior e o número de partículas é fixo. O conjunto microcanônico contém com igual probabilidade cada estado possível que é consistente com essa energia e composição.
Conjunto canônico
Semelhantemente, um conjunto canônico é um conjunto de réplicas de um sistema, identicamente preparados, onde cada um tem valores definidos de massa(m), volume(V) e temperatura(T). Descreve um sistema de composição fixa que se encontra em equilíbrio térmico com um banho de calor de uma temperatura precisa, ou seja, no conjunto canônico o número de partículas é fixo, mas o sistema troca calor com o ambiente. O conjunto canônico contém estados de variação de energia, mas composição idêntica; os diferentes estados no conjunto possuem diferentes probabilidades, dependendo de sua energia total.
Conjunto grão-canônico
Descreve um sistema com a composição não fixada (número de partículas incerto) que está em equilíbrio térmico e químico com um reservatório termodinâmico. Assim, no conjunto grão-canônico o sistema pode trocar calor e partículas, ou seja, o número de partículas pode variar. O reservatório tem uma temperatura precisa, e os potenciais químicos precisos para diversos tipos de partículas. O ensemble grão-canônico contém estados de variação de energia e número variado de partículas; os diferentes estados no conjunto possuem diferentes probabilidades, dependendo de sua energia total e número de partículas totais.
Para sistemas contendo muitas partículas (o limite termodinâmico), todos os três conjuntos listados acima tendem a ter um comportamento idêntico. Nesse caso, a escolha do conjunto é simplesmente uma questão de conveniência matemática.
Casos importantes onde os conjuntos termodinâmicos não dão resultados idênticos incluem:
- Sistemas microscópicos;
- Grandes sistemas em fase de transição;
- Grandes sistemas com interações de longo alcance.
Nestes casos, o conjunto termodinâmico deve ser escolhido corretamente, pois existem diferenças observáveis entre estes conjuntos não apenas no tamanho das flutuações, mas também em quantidades médias, tais como a distribuição de partículas. O conjunto correto é o que corresponde à maneira como o sistema foi preparado e caracterizado, em outras palavras, o conjunto que reflete o conhecimento sobre esse sistema.
Ensembles termodinâmicos | |||
---|---|---|---|
Microcanônico | Canônico | Grão-canônico | |
Variáveis fixas | N, E, V | N, T, V | μ, T, V |
Características microscópicas |
|
|
|
Função macroscópica |
|
|
|
Comentários
Postar um comentário